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Abstract— In this paper, three different frameworks for un-
certainty description are considered: probability and possibility
theories, and Dempster-Shafer theory of belief functions. For all
of them special operators of composition are introduced, which
enable, among others, defining the concept of factorization
(used here as an alternative notion for conditional indepen-
dence) meeting all the semigraphoid axioms. It is showed
that whilst for probability and possibility theories factorization
and conditional independence coincide, they differ from each
other for belief functions. Since the introduced factorization
manifests most of the properties required for the concept of
conditional independence, the question arises whether it would
be useful to substitute the often used concept of the conditional
independence with the factorization introduced in this paper.

I. INTRODUCTION

PERHAPS the main reason, why about 25 years ago the

concept of conditional independence got into the center

of research of so many scholars, is the fact that it enables

efficient representation of multidimensional probability dis-

tributions: multidimensional models. Namely, given its con-

ditional independence structure (i.e. a list of all the condi-

tional independence relations that hold true) the considered

probability distribution is uniquely specified by a system

of its marginal distributions or conditional low-dimensional

distributions. Naturally, such a system of low-dimensional

distributions can be represented by a much smaller number

of parameters (probabilities) than the considered multidimen-

sional distribution.

So, under the assumption of validity of all the conditional

independence relations that can be read from the respective

acyclic directed graph, the distribution represented by a

Bayesian network is uniquely specified by a system of condi-

tional distributions. Similarly, for graphical models, assuming

that all the conditional independence relations specified by

the separation criterion hold true, one gets that the respective

multidimensional probability distribution is uniquely deter-

mined by its marginal distributions corresponding to cliques

of the underlying graph.

The main difference between these two just mentioned

models consists in the fact that whereas for Bayesian net-

works there exists an explicit formula how to compute

the respective multidimensional distribution (it is a simple

product of the considered conditional distributions) no such

a formula exists for general (cyclic) graphical models; linear
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programming or iterative fitting approaches must be used.

An existence of such an explicit formula is usually based

on the fact that variables X and Y are conditionally in-

dependent given variable Z if and only if p(X,Y, Z) =
p(X,Z) · p(Y |Z). The mentioned unique specification by

its marginals and the existence of the explicit formula

inspired us about 10 years ago to introduce an operator

of composition that, if applied iteratively, describes how

multidimensional distributions can be computed from its low-

dimensional marginals. Later, the operator of composition

was introduced in possibility theory and recently also for

belief functions. In this paper we briefly recall all three

definitions and their connection to the concept of conditional

independence. In the main part of the paper we shall show

that only 6 simple properties must hold for the operator

of composition to guarantee that the corresponding relation

of conditional independence, we will call it factorization

here, meets the semigraphoid properties, which are generally

accepted as axioms, which should hold true for any relation

of conditional independence (irrelevance, non-interactivity).

II. OPERATORS OF COMPOSITION - NOTATION

In the whole paper we shall deal with a finite number of

variables X1, X2, . . . ,Xn each of which is specified by a

finite set Xi of its values. So, we will consider multidimen-

sional set (space)

XN = X1 × X2 × . . . × Xn,

and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK denotes

a Cartesian product of those Xi, for which i ∈ K:

XK =×i∈KXi,

and XK = {Xi}i∈K denotes the set of the respective

variables.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will

be denoted x↓K , i.e. for K = {i1, i2, . . . , i�}
x↓K = (xi1 , xi2 , . . . , xi�

) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will

denote a projection of A into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.
Let us remark that we do not exclude situations when K = ∅.

In this case A↓∅ = ∅.

In addition to the projection, in this text we will need also

the opposite operation which will be called extension. By
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an extension of two sets A ⊆ XK and B ⊆ XL we will

understand a set

A ⊗ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
Notice that if K and L are disjoint then their extension is

just their Cartesian product

A ⊗ B = A × B.

If K∩L 
= ∅ and A↓K∩L∩B↓K∩L = ∅ then also A⊗B = ∅.

A. Probability Distributions

Let us start considering probability distributions on XN

and its subspaces XK (K ⊆ N ). For L ⊆ K and a

probability distribution p on XK , i.e.

p : XK −→ [0, 1],

for which ∑
x∈XK

p(x) = 1,

symbol p↓L will denote its marginal distribution defined on

XL. It is defined for all x ∈ XL by the expression

p↓L(x) =
∑

y∈XK :y↓L=x

p(y).

As usually, we will also speak about probability p(A) of a set

A ⊆ XK , which is a sum of probabilities of the respective

points

p(A) =
∑
x∈A

p(x).

Realize that p(∅) = 0, but p↓∅(∅) = 1.

Consider three disjoint sets I, J,K ⊂ N (I 
= ∅ 
= J). We

say that for distribution p groups of variables XI and XJ are

conditionally independent given variables XK (in symbol

XI ⊥⊥ XJ |XK [p]) if for all x ∈ XI∪J∪K the following

equality holds true

p↓I∪J∪K(x) · p↓K(x↓K) = p↓I∪K(x↓I∪K) · p↓J∪K(x↓J∪K).

It is well known that this is equivalent to the fact that

p↓I∪J∪K(x) = p↓I∪K(x↓I∪K) · p↓J∪K(x↓J |x↓K).

From two low-dimensional distributions p1 and p2 one can

get a distribution of a higher dimension with the help of the

following operator of composition.

Definition 1: Consider arbitrary two distributions p1 and

p2 defined on XK1
,XK2

, respectively (K1 
= ∅ 
= K2). If

p
↓K1∩K2

1 is dominated by p
↓K1∩K2

2 , i.e.

∀z ∈ XK1∩K2
p
↓K1∩K2

2 (z) = 0 =⇒ p
↓K1∩K2

1 (z) = 0,

then p1 � p2 is for all x ∈ XK∪L defined by the expression

(p1 � p2)(x) =
p1(x

↓K1) · p2(x
↓K2)

p
↓K1∩K2

2 (x↓K1∩K2)
.

Otherwise the composition p1 � p2 remains undefined.

What is the result of composition of two distributions p1

and p2? The basic answer to this question is given by the

following simple assertion.

Lemma 1: Consider three probability distributions

p1, p2, p3, defined on XK1
,XK2

,XK3
, respectively. If

p1 � p2 is defined (in case of point (iv) we assume that

(p1 � p2) � p3 is defined) then

(i) p1 � p2 is a probability distribution on XK1∪K2
;

(ii) (p1 � p2)
↓K1 = p1;

(iii) p1 � p2 = p2 � p1 ⇐⇒ p
↓K1∩K2

1 = p
↓K1∩K2

2 ;

(iv) K1 ⊇ (K2∩K3) =⇒ (p1 �p2)�p3 = (p1 �p3)�p2;

(v) K2 ⊇ L ⊇ (K1∩K2) =⇒ p1 �p2 = (p1 �p
↓L
2 )�p2;

(vi) (K1 ∪ K2) ⊇ L ⊇ K1

=⇒ (p1 � p2)
↓L = p1 � p

↓K2∩L
2 .

All these properties were proved in our preceding papers

[4], [6], nevertheless most of them follow immediately from

the fact that if p1 � p2 is defined then

(p1 � p2)(x) = p1(x
↓K1) · p2(x

↓K2\K1 |x↓K1∩K2).

From this equality one can also immediately see the property,

which is of great importance from the point of view of this

paper, and which is expressed by the following assertion (its

proof can also be found in [4]).

Lemma 2: Let I, J,K be disjoint subsets of N , I and J

be nonempty. For a probability distribution p defined on XN

p↓I∪J∪K = p↓I∪K � p↓J∪K

if and only if

XI ⊥⊥ XJ |XK [p].

The lemma reads that for probability distributions we

could define a concept of conditional independence on the

basis of factorization: Variables XI and XJ are conditionally

independent given variables XK for distribution p if and

only if the marginal distribution p↓I∪J∪K factorizes in the

following sense

p↓I∪J∪K = p↓I∪K � p↓J∪K .

B. Possibility Distributions

To distinguish possibility distributions from probability

ones, we will denote possibility distributions by Greek char-

acter π (with possible indices). In analogy to a probability

distribution, possibility distribution π on XK is also a

mapping

π : XK −→ [0, 1].

In this paper we will consider only normal possibility distri-

butions, i.e. distributions π for which

max
x∈XK

π(x) = 1.

In a way closely connected with the notion of normalization

is the most important difference between probabilistic and

possibilistic settings, which concerns marginalization.

Marginalization in possibility theory differs from that in

the probabilistic framework in using maximization instead
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of summation. For J ⊂ K a marginal possibility distribution

π↓J of distribution π (which is assumed to be defined on

XK) is defined for all x ∈ XL by the formula

π↓L(x) = max
y∈XK :y↓L=x

π(y).

In analogy to this, possibility π(A) of a set A ⊆ XK is got

from the respective possibility distribution π defined on XK

in the following way

π(A) = max
x∈A

π(x).

Since conditioning as well as the concept of independence

in possibility theory are closely connected with t-norms, it

is quite natural that also operator of composition is parame-

terized by a t-norm.

Definition 2: A triangular norm (or a t-norm) T is a

binary operator on [0, 1] (i.e. T : [0, 1]2 → [0, 1]) satisfying

the following three conditions:

• for any x ∈ [0, 1], T (1, x) = x;

• for any x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2

T (x1, y1) ≤ T (x2, y2);

• for any x, y, z ∈ [0, 1], T (T (x, y), z) = T (x, T (y, z)),
and T (x, y) = T (y, x).

In this paper we shall deal only with continuous t-norms,

i.e. with t-norms which are continuous functions. The reader

not familiar with t-norms can consider in the following text

only the simplest t-norms: either Gödel’s t-norm TG(x, y) =
min(x, y), or product t-norm Tp(x, y) = x · y;

Consider possibility distribution π defined on XK and

two disjoint nonempty subsets I, J of K. The conditional

distribution π↓I∪K
(
x↓I |

T
x↓J

)
is defined by

π↓I∪K
(
x↓I |

T
x↓J

)
= sup{z ∈ [0, 1] : T (z, π↓I

(
x↓I

)
) ≤ π↓I∪J

(
x↓I∪J

)}.
In the case that

π↓I∪J
(
x↓I∪J

)
= T

(
π↓I

(
x↓I

)
, π↓J

(
x↓J

))
,

the two groups of variables XI and XJ are said (for

distribution π) to be T -independent.

To be able to introduce conditional independence let us

consider three disjoint subsets I, J and K (I 
= ∅ 
= J). For

a possibility distribution π two groups of variables XI and

XJ are conditionally T -independent given the third group

XK if

π↓I∪J∪K(x↓I∪J∪K)

= T (π↓I∪K(x↓I∪K), π↓J∪K(x↓J |T x↓K)).

This property will be denoted by XI ⊥⊥T XJ |XK [π].
In [15], Vejnarová defined a possibilistic version of the

operator of composition.

Definition 3: Consider arbitrary two possibility distribu-

tions π1 and π2 defined on XK1
and XK2

, respectively

(K1 
= ∅ 
= K2). For an arbitrary continuous t-norm T their

composition π1 �T π2 is defined for all x ∈ XK∪L by the

following expression

(π1 �T π2)(x) = T (π1(x
↓K1), π2(x

↓K2\K1 |x↓K1∩K2)).

Let us highlight the main difference between probabilistic

and possibilistic operators of composition: whereas in prob-

ability theory the operator of composition may be undefined

for a couple of probability distributions, in possibility theory

the result of composition is always defined.

From the point of view of this paper the most important

are the properties of the possibilistic operator of composition

formulated in the following two Lemmas, which were proved

by Vejnarová in [15], [16] and [17].

Lemma 3: For arbitrary three possibility distributions

π1, π2, π3, defined on XK1
,XK2

,XK3
, respectively, and a

continuous t-norm T the following six properties hold true:

(i) π1 �T π2 is a possibility distribution on XK1∪K2
;

(ii) (π1 �T π2)
↓K1 = π1;

(iii) π1 �T π2 = π2 �T π1 ⇐⇒ π
↓K1∩K2

1 = π
↓K1∩K2

2 ;

(iv) K1 ⊇ (K2 ∩ K3)
=⇒ (π1 �T π2) �T π3 = (π1 �T π3) �T π2;

(v) K2 ⊇ L ⊇ (K1 ∩ K2)
=⇒ π1 �T π2 = (π1 �T π

↓L
2 ) �T π2;

(vi) (K1 ∪ K2) ⊇ L ⊇ K1

=⇒ (π1 �T π2)
↓L = π1 �T π

↓K2∩L
2 .

Lemma 4: Let I, J,K be disjoint subsets of N , I and J

be nonempty. For a possibility distribution π defined on XN

π↓I∪J∪K = π↓I∪K �T π↓J∪K

if and only if

XI ⊥⊥T XJ |XK [π].

The last lemma reformulates for possibility distributions

what was said for probability distributions: variables XI

and XJ are conditionally T -independent given variables XK

for possibility distribution π if and only if the marginal

distribution π↓I∪J∪K factorizes in the following sense

π↓I∪J∪K = π↓I∪K �T π↓J∪K .

C. Belief Functions

A belief function is defined with the help of a basic

(probability or belief ) assignment m on XN , i.e.

m : P(XN ) −→ [0, 1]

for which ∑
A⊆XN

m(A) = 1.

Therefore, for the sake of simplicity, we will not speak

about belief functions but about basic assignments: We shall

marginalize and compose basic assignments. For each K ⊂
N marginal basic assignment of m is defined (for each

B ⊆ XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).
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TABLE I

BASIC ASSIGNMENTS m1 AND m2 .

A ⊆ X1 m1(A) B ⊆ X2 m2(B)

{a} 0.2 {b} 0.6

{ā} 0.3 {b̄} 0

{aā} 0.5 {ab̄} 0.4

An operator of composition was for basic assignments

defined in [8] by the following definition.

Definition 4: For two arbitrary basic assignments m1 on

XK1
and m2 on XK2

(K1 
= ∅ 
= K2) a composition m1�m2

is defined for each C ⊆ XK1∪K2
by one of the following

expressions:

[a] if m
↓K1∩K2

2 (C↓K1∩K2) > 0 and C = C↓K1 ⊗ C↓K2

then

(m1 � m2)(C) =
m1(C

↓K1) · m2(C
↓K2)

m
↓K1∩K2

2 (C↓K1∩K2)
;

[b] if m
↓K1∩K2

2 (C↓K1∩K2) = 0 and C = C↓K1×XK2\K1

then

(m1 � m2)(C) = m1(C
↓K1);

[c] in all other cases (m1 � m2)(C) = 0.

Since one of the goals of this paper is to show that this

operator enables us to define for belief functions an innova-

tive version of the relation of conditional independence, we

will, in agreement with the requirements of an anonymous

referee, illustrate its properties on a couple of examples.

Example 1: Consider two basic assignments m1 and m2

on X1 = {a, ā} and X2 = {b, b̄}, respectively, which are

specified in Table I. Since, in this case, m1 and m2 are

defined for disjoint sets of variables (K1 ∩ K2 is empty),

composition simplifies to the expression

(m1 � m2)(C) = m1(C
↓{1}) · m2(C

↓{2}),

which is to be understood exactly in the sense of Definition 4:

for all C such that C = C↓{1} ⊗ C↓{2} it is defined by the

product m1(C
↓{1}) · m2(C

↓{2}), for all the other C it is 0
(see also Table II).

With respect to the main purpose of this paper, it is relevant

to notice the following fact. Consider, for example, set

C = {ab, āb̄} 
= C↓1 ⊗ C↓2 = {a, ā} ⊗ {b, b̄} = X1 ⊗ X2.

In this case Definition 4 assigns m1 � m2(C) = 0. If any

positive value were assigned to this set C, it would express

that one gives a part of her belief either a∧ b or ā∧ b̄. This

means that one believes that there is a type of dependence

between variables X1 and X2.

Using Table II, where the values of m1�m2 are presented,

the reader can easily check also other properties expected for

the composition; for example that m1 = (m1 �m2)
↓{1}, and

since m1 and m2 are trivially projective (consistent) also

m2 = (m1 �m2)
↓{2} (see property (iii) of Lemma 5 below).

TABLE II

BASIC ASSIGNMENT m1 � m2 FROM EXAMPLE 1.

C ⊆ X{1,2} C = C↓{1} ⊗ C↓{2} (m1 � m2)(C)

{ab} {a} ⊗ {b} 0.12

{ab̄} {a} ⊗ {b̄} 0

{āb} {ā} ⊗ {b} 0.18

{āb̄} {ā} ⊗ {b̄} 0

{ab, ab̄} {a} ⊗ X2 0.08

{ab, āb} X1 ⊗ {b} 0.3

{ab, āb̄} 0

{ab̄, āb} 0

{ab̄, āb̄} X1 ⊗ {b̄} 0

{āb, āb̄} {ā} ⊗ X2 0.12

{ab, ab̄, āb} 0

{ab, ab̄, āb̄} 0

{ab, āb, āb̄} 0

{ab̄, āb, āb̄} 0

{ab, ab̄, āb, āb̄} X1 ⊗ X2 0.2

TABLE III

BASIC ASSIGNMENTS m1(x{1,2}) AND m2(x{2,3}).

C ⊆ X{1,2} m1(C)

{ab} 0.1

{ab̄} 0.5

{āb} 0.2

{āb̄} 0

{ab, ab̄} 0

{ab, āb} 0

{ab, āb̄} 0

{ab̄, āb} 0

{ab̄, āb̄} 0

{āb, āb̄} 0

{ab, ab̄, āb} 0

{ab, ab̄, āb̄} 0

{ab, āb, āb̄} 0

{ab̄, āb, āb̄} 0

{ab, ab̄, āb, āb̄} 0.2

C ⊆ X{2,3} m2(C)

{bc} 0

{bc̄} 0

{b̄c} 0.3

{b̄c̄} 0.1

{bc, bc̄} 0

{bc, b̄c} 0

{bc, b̄c̄} 0.1

{bc̄, b̄c} 0

{bc̄, b̄c̄} 0

{b̄c, b̄c̄} 0.1

{bc, bc̄, b̄c} 0

{bc, bc̄, b̄c̄} 0

{bc, b̄c, b̄c̄} 0.3

{bc̄, b̄c, b̄c̄} 0

{bc, bc̄, b̄c, b̄c̄} 0.1

Example 2: Consider three binary variables X1, X2, X3

with X1 = {a, ā}, X2 = {b, b̄}, X3 = {c, c̄}, and two

2-dimensional basic assignments m1 and m2 as specified in

Table III.

Notice that these two assignments are not projective;

for this see their one-dimensional marginals in Table IV.

Therefore, because of property (iii) of Lemma 5 presented

below m1 � m2 
= m2 � m1.

To determine general 3-dimensional assignment (of binary

variables) one has to specify 255 numbers, because X{1,2,3}

has 28 − 1 = 255 nonempty subsets. However, when

computing m1 � m2, most of these 255 values equal 0
because most of these subsets do not meet the condition

C = C↓{1,2}⊗C↓{2,3} and therefore the corresponding value

of the assignment m1 �m2 is defined by the point [c] of the

definition.

What are the subsets for which C 
= C↓{1,2} ⊗ C↓{2,3}?
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TABLE IV

ONE-DIMENSIONAL MARGINAL ASSIGNMENTS m
↓{1}
1

, m
↓{2}
1

AND

m
↓{2}
2

, m
↓{3}
2

.

A ⊆ X1 m
↓{1}
1

(A)

{a} 0.6

{ā} 0.2

{a, ā} 0.2

A ⊆ X2 m
↓{2}
1

(A)

{b} 0.3

{b̄} 0.5

{b, b̄} 0.2

A ⊆ X2 m
↓{2}
2

(A)

{b} 0

{b̄} 0.5

{b, b̄} 0.5

A ⊆ X3 m
↓{3}
2

(A)

{c} 0.3

{c̄} 0.3

{c, c̄} 0.4

TABLE V

BASIC ASSIGNMENT m1 � m2 FOR EXAMPLE 2.

C ⊆ X{1,2,3} C↓{1,2} ⊗ C↓{2,3} (m1 � m2)(C)

[a] {ab̄c} {ab̄} ⊗ {b̄c} 0.3

[a] {ab̄c̄} {ab̄} ⊗ {b̄c̄} 0.1

[a] {ab̄c, ab̄c̄} {ab̄} ⊗ {b̄c, b̄c̄} 0.1

[b] {abc, abc̄} {ab} ⊗ X1 0.1

[b] {ābc, ābc̄} {āb} ⊗ X1 0.2

[a] {abc, ābc, ab̄c̄, āb̄c̄} X{1,2} ⊗ {bc, b̄c̄} 0.04

[a]

{
abc, ābc, ab̄c

āb̄c, ab̄c̄, āb̄c̄

}
X{1,2} ⊗ {bc, b̄c, b̄c̄} 0.12

[a]

{
abc, ābc, ab̄c, āb̄c

abc̄, ābc̄, ab̄c̄, āb̄c̄

}
X{1,2} ⊗ X{2,3} 0.04

For example, it is easy to show that all the sets of cardi-

nality 7 belong to this category (hint: show that for any

C ⊆ X{1,2,3}, for which |C| = 7, C↓{1,2} = X{1,2} and

C↓{2,3} = X{2,3}).

Since all singletons (one-point-sets) meet the considered

equality C = C↓{1,2} ⊗ C↓{2,3}, all sets C, for which

C 
= C↓{1,2} ⊗ C↓{2,3} must have at least two elements: an

example is {abc, ābc̄}. As further examples may serve sets

{abc̄, ābc, ābc̄, ab̄c̄} and {ābc, ab̄c, abc̄}. A common charac-

teristics of all these sets is that assigning a positive belief

to them one introduces a type of conditional relationship

between X1 and X3 given (at least one) value of X2.

Let us turn our attention back to computation of m1 � m2

for assignments of our example. For this, one immediately

notices that point [b] of the definition is used whenever

C ⊆ X{1,2,3} is considered for which C↓{2} = b, since

m
↓{2}
2 (b) = 0. In fact, we get only 8 subsets, for which

assignment m1 �m2 is positive - see Table V, where the first

column bears the information, which point of the definition

is used to compute the respective value.

Let us start studying properties of the operator of com-

position for basic assignments. The reader will perhaps not

be surprised if we claim that the operator of composition

meets all the six basic properties holding for operators of

composition in probabilistic as well as in possibilistic cases.

Notice that similarly to the possibilistic version (and in

contrast to the probabilistic one), the operator of composition

for basic assignments is always defined.

Lemma 5: For arbitrary basic assignments m1,m2,m3

defined on X1,X2,X3, respectively

(i) m1 � m2 is a basic assignment on XK1∪K2
;

(ii) (m1 � m2)
↓K1 = m1;

(iii) m1 � m2 = m2 � m1 ⇐⇒ m
↓K1∩K2

1 = m
↓K1∩K2

2 ;

(iv) K1 ⊇ (K2 ∩ K3)
=⇒ (m1 � m2) � m3 = (m1 � m3) � m2;

(v) K2 ⊇ L ⊇ (K1 ∩ K2)
=⇒ m1 � m2 = (m1 � m

↓L
2 ) � m2;

(vi) (K1 ∪ K2) ⊇ L ⊇ K1

=⇒ (m1 � m2)
↓L = m1 � m

↓K2∩L
2 .

All these properties were proved in [8]. The only exception

is property (v); however its proof is rather technical and we

omit it due to the lack of space.

Answering the question, what is the relationship between

the factorization with the help of the operator of composition

and the concept of conditional independence, is in this case

much more difficult than in the previous two subsections.

One of the reasons is the fact that the notion of the con-

ditional independence for belief functions was introduced in

several different ways. Perhaps the most frequent (and maybe

also with the greatest number of supporters) is the one, which

can be easily defined with the help of commonality func-

tion. Using notation of Studený [11], commonality function

Comm is defined for basic assignment m (assuming that m

is defined on XN ) for each A ⊂ XN by a simple formula

Comm(A) =
∑
B⊇A

m(B).

Yaghlane et al. [2] define the concept of conditional non-

interactivity (as well as Shenoy defines his concept of

conditional independence) in the way that variables XI

and variables XJ are conditionally non-interactive given

variables XK if and only if for all A ⊆ XN

Comm↓I∪J∪K (A↓I∪J∪K) · Comm↓K (A↓K)

= Comm↓I∪K (A↓I∪K) · Comm↓J∪K (A↓J∪K).

In this paper we shall denote this property by

XI ⊥⊥[m] XJ |XK .

Though for basic assignments it does not hold true that

XI ⊥⊥[m] XJ |XK if and only if the basic marginal assign-

ment m↓I∪J∪K factorizes in the following sense

m↓I∪J∪K = m↓I∪K � m↓J∪K ,

still there are properties which reflect a similarity of these

two notions. First, Yaghlane et al. in [2] showed that if

XI ⊥⊥[m] XJ |XK then all focal elements of m↓I∪J∪K

(i.e. sets A ⊆ XI∪J∪K , for which m↓I∪J∪K(A) > 0)

are Z-layered rectangles, which are nothing else than sets

A ⊆ XI∪J∪K , which can be expressed as an extension of

its respective projections:

A = A↓I∪K ⊗ A↓J∪K .
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Therefore, combining the mentioned Yaghlane et al. property

with Definition 4 we get the following simple assertion.

Assertion: Consider a basic assignment m on XN and

three disjoint subsets I, J,K ⊂ N (I 
= ∅ 
= J). If A ⊆
XI∪J∪K is a focal element of m↓I∪J∪K and A 
= A↓I∪K ⊗
A↓J∪K then neither of the following two expressions holds

true:

XI ⊥⊥[m] XJ |XK ,

and

m↓I∪J∪K = m↓I∪K � m↓J∪K .

So, the first property connecting the concepts of condi-

tional non-interactivity and factorization is that any of them

guarantees that the focal elements of the respective basic

assignment can be expressed as an extension of its corre-

sponding projections (Z-layered rectangles in the language

of Yaghlane et al.).

It is well known that if all focal elements of a basic

assignment m are singletons, i.e. if m(A) > 0 implies

that |A| = 1, then this basic assignment corresponds to

a probability distribution, and it is why some authors call

it Bayesian basic assignment. In [11] Studený claims that

for Bayesian basic assignments the concept of conditional

non-interactivity coincides with the concept of conditional

independence of the corresponding probability distribution.

In [8], we proved that if we compose by the operator of

composition two Bayesian basic assignments, such that the

corresponding probability distributions may be composed

by the probabilistic operator of composition (i.e. the com-

position is defined) then the resulting distribution is again

Bayesian.

Lemma 6: Let m1 and m2 be Bayesian basic assignments

on XK and XL, respectively, for which

m2
↓K∩L(A) = 0 =⇒ m1

↓K∩L(A) = 0 (1)

for any A ⊆ XK∪L. Then m1 � m2 is a Bayesian basic

assignment.

From this, it is obvious that considering Bayesian assign-

ment m, for composition of its marginals m↓I∪K � m↓J∪K

only case [a] of the definition is applied.1 Therefore, com-

paring Definitions 1 and 4 we see that the result is always

defined (composed distributions, being marginals of the same

distribution are consistent) and is the same for both the

Definitions.

These considerations result in a second property con-

necting the concepts of conditional non-interactivity and

factorization: for Bayesian basic assignments they coincide

with probabilistic conditional independence.

In conclusion of this section we will show the difference

between the compared concepts. Namely, in [2] the authors

1In fact, case [b] is used when m↓K∩L(A↓K∩L) = 0 but then the
results equals zero, which is the same value, which would be received by
application of rule [a].

admit that their concept of conditional non-interactivity (as

showed by Studený) is not consistent with marginalization.

What does it mean and the fact that the factorization consid-

ered in this paper does not suffer from this imperfectness will

be visible from the following example, which is borrowed

from [2].

Example 3: Consider three binary variables X1, X2, X3

with X1 = {a, ā}, X2 = {b, b̄}, X3 = {c, c̄} as in Exam-

ple 2, and two basic assignments m1(x{1,3}),m2(x{2,3}),
each of which having only two focal elements:

m1({ac̄, āc̄}) = 0.5 m1({ac̄, āc}) = 0.5
m1({bc̄, b̄c̄}) = 0.5 m1({bc̄, b̄c}) = 0.5

For them, it is showed in [2] that there does not exist basic

assignment m on X{1,2,3} such that m1,m2 are its marginals

(i.e. m↓{1,3} = m1,m
↓{2,3} = m2) and X1 ⊥⊥[m] X2|X3.

Since

m
↓{3}
1 ({c̄}) = m

↓{3}
2 ({c̄}) = .5,

m
↓{3}
1 ({c, c̄}) = m

↓{3}
2 ({c, c̄}) = .5,

basic assignments m1 and m2 are projective (consistent),

and therefore their composition (and due to property (iii)

it does not matter whether we consider m = m1 � m2 or

m = m2 �m1) is an assignment having both m1 and m2 for

its marginals. As the reader easily verifies, it is an assignment

with also only two focal elements

(m1 � m2)({abc̄, ab̄c̄, ābc̄, āb̄c̄}) = .5,

(m1 � m2)({abc̄, āb̄c}) = .5.

Now, let us show that X1 
⊥⊥[m1�m2] X2|X3. For this, it is

enough to show for one set A ⊆ {a, ā} × {b, b̄} × {c, c̄} the

following equality does not hold true

Comm(A) · Comm↓{3}(A↓{3})

= Comm↓{1,3}(A↓{1,3}) · Comm↓{2,3}(A↓{2,3}).

Let us consider A = {abc̄, ab̄c̄, ābc̄, āb̄c̄} and compute the

necessary commonality functions

Comm({abc̄, ab̄c̄, ābc̄, āb̄c̄}) = m({abc̄, ab̄c̄, ābc̄, āb̄c̄})
= 0.5,

Comm↓{1,3}({ac̄, āc̄}) = m↓{1,3}({ac̄, āc̄}) = 0.5,

Comm↓{2,3}({bc̄, b̄c̄}) = m↓{2,3}({bc̄, b̄c̄}) = 0.5

and, eventually

Comm↓{3}({c̄}) = m↓{3}({c̄}) + m↓{3}({c, c̄}) = 1.0.

So we see that though the basic assignment m factorizes in

the sense that m = m↓{1,3} � m↓{2,3}, X1 
⊥⊥[m] X2|X3.

III. GENERAL PROPERTIES OF THE OPERATOR

This section will be devoted to properties of the operator

of composition which do not depend on the framework in

which the operator is defined. The studied characteristics

can be deduced with the help of properties (i)-(vi) (see

Lemmas 1, 3 and 5), which hold for all three versions of
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the operator. Therefore, in this section we will consider an

object ℘, which may be either probability distributions, or

possibility distributions or basic assignments. Recalling that

properties (i)-(vi) hold for probability distributions only if

p1 � p2 (or (p1 � p2) � p3 in case of point (iv)) is defined,

we have to realize that if we compose marginals p↓I , p↓J of

a probability distribution p then the composition p↓I � p↓J

is always defined. Moreover, we also must not forget that in

case when ℘ is a possibility distribution then the operator of

composition � is parameterized by a continuous t-norm.

Let us consider an arbitrary object ℘ defined on XN and

show that the ternary relation of factorization defined (for

disjoint I, J, L ⊂ N , I 
= ∅ 
= J) in the following way

XI ⊥⊥℘ XJ |XL ⇐⇒ ℘↓I∪J∪L = ℘↓I∪L � ℘↓J∪L

is a semigraphoid, i.e. it meets the four semigraphoid axioms

listed below. In what follows, each axiom is reformulated into

the language of composition and the corresponding theorem

is proved.

A. Symmetry

XI ⊥⊥℘ XJ |XL =⇒ XJ ⊥⊥℘ XI |XL

Theorem 1: If ℘↓I∪J∪L = ℘↓I∪L � ℘↓J∪L then also

℘↓I∪J∪L = ℘↓J∪L � ℘↓I∪L.

Proof: The assertion follows immediately from the fact

that marginals ℘↓I∪L and ℘↓J∪L are consistent, and therefore

property (iii) may be applied

℘↓I∪L � ℘↓J∪L = ℘↓J∪L � ℘↓I∪L.

B. Decomposition

XI ⊥⊥℘ XJ∪K |XL =⇒ XI ⊥⊥℘ XK |XL

Theorem 2: If ℘↓I∪J∪K∪L = ℘↓I∪L �℘↓J∪K∪L then also

℘↓I∪K∪L = ℘↓I∪L � ℘↓K∪L.

Proof: The assertion will be got just by application of

marginalization property (vi)

℘↓I∪K∪L =
(
℘↓I∪J∪K∪L

)↓I∪K∪L

=
(
℘↓I∪L � ℘↓J∪K∪L

)↓I∪K∪L

= ℘↓I∪L � ℘↓K∪L.

C. Weak Union

XI ⊥⊥℘ XJ∪K |XL =⇒ XI ⊥⊥℘ XJ |XK∪L

Theorem 3: If ℘↓I∪J∪K∪L = ℘↓I∪L �℘↓J∪K∪L then also

℘↓I∪J∪K∪L = ℘↓I∪K∪L � ℘↓J∪K∪L.

Proof: To prove this assertion we have to realize that,

due to property (v),

℘↓I∪L � ℘↓J∪K∪L =
(
℘↓I∪L � ℘↓K∪L

)
� ℘↓J∪K∪L,

and that, because the assumptions of Theorem 2 are fulfilled,

also

℘↓I∪K∪L = ℘↓I∪L � ℘↓K∪L.

Using these two equalities we finish the proof in a simple

way

℘↓I∪J∪K∪L = ℘↓I∪L � ℘↓J∪K∪L

=
(
℘↓I∪L � ℘↓K∪L

)
� ℘↓J∪K∪L

= ℘↓I∪K∪L � ℘↓J∪K∪L.

D. Contraction

XI ⊥⊥℘ XK |XL & XI ⊥⊥℘ XJ |XK∪L

=⇒ XI ⊥⊥℘ XJ∪K |XL

Theorem 4: If ℘↓I∪K∪L = ℘↓I∪L � ℘↓K∪L, and

℘↓I∪J∪K∪L = ℘↓I∪K∪L � ℘↓J∪K∪L, then also

℘↓I∪J∪K∪L = ℘↓I∪L � ℘↓J∪K∪L.

Proof: We will follow the same idea as in the preceding

proof but in the reverse order. First, we will use property (v)

and then both assumptions of this assertion.

℘↓I∪L � ℘↓J∪K∪L =
(
℘↓I∪L � ℘↓K∪L

)
� ℘↓J∪K∪L

= ℘↓I∪K∪L � ℘↓J∪K∪L

= ℘↓I∪J∪K∪L.

IV. CONCLUSIONS

In three different frameworks we introduced an operator

of composition, which, when applied to low-dimensional

objects, forms a more-dimensional objects of the same type.

Therefore, when applied iteratively, the operator of compo-

sition enables constructing multidimensional models from a

system of low-dimensional objects. In this paper we were

interested only in the very basic properties of the operator:

especially, in possibility to introduce the ternary relation of

factorization:

XI ⊥⊥℘ XJ |XL ⇐⇒ ℘↓I∪J∪L = ℘↓I∪L � ℘↓J∪L.

We showed a close connection between the relations of

factorization and conditional independence in probability and

possibility theories, and compared these two notions for

belief functions. It appeared to be interesting that for proving

famous semigraphoid axioms for the concept of factorization

we needed only six basic properties (i)-(vi) (though we are

not sure, we expect them to be independent).

When comparing factorization with the prevalent concept

of conditional independence for belief functions (Yaghlane

et al. call it conditional non-interactivity) we showed that,

though manifesting some equal properties, they differ from

each other. We showed that our concept of factorization

does not suffer from the insufficiency, which Studený calls

inconsistency with marginalization. Nevertheless, we do not

hide the fact that in contrast with the fact that belief

function factorization coincides with probabilistic conditional

independence for Bayesian basic assignments, no such a

coincidence holds for basic assignments representing possi-

bilistic distributions. This is, however, quite a different (and

complex) question (we know that it is under a serious reserch

of J. Vejnarová [18]).

2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008) 2365



REFERENCES

[1] B. Ben Yaghlane, Ph. Smets, and K. Mellouli, “Belief Function Inde-
pendence: I. The Marginal Case,” Int. J. of Approximate Reasoning,
vol. 29, no. 1, pp. 47–70, 2002.

[2] B. Ben Yaghlane, Ph. Smets, and K. Mellouli, “Belief Function Inde-
pendence: II. The Conditional Case,” Int. J. of Approximate Reasoning,
vol. 31, no. (1-2), pp. 31–75, 2002.

[3] E. Ben Yaghlane, Ph. Smets, and K. Mellouli, “Directed Evidential
Networks with Conditional Belief functions,” Proc. of ECSQARU

2003, LNAI 2711, Springer, pp. 291–305, 2003.
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Report 9803, VŠE Praha, 1998.
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